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Abstract
Purpose of Review The purposes of this review were as fol-
lows: first, to provide an overview of the gut microbiota and
its interactions with the gut and the central nervous system
(the microbiota-gut-brain axis) in health, second, to review
the relevance of this axis to the pathogenesis of neurodegen-
erative diseases, such as Parkinson’s disease, and, finally, to
assess the potential for microbiota-targeted therapies.
Recent Findings Work on animal models has established the
microbiota-gut-brain axis as a real phenomenon; to date, the
evidence for its operation in man has been limited and has
been confronted by considerable logistical challenges.
Animal and translational models have incriminated a dis-
turbed gut microbiota in a number of CNS disorders, includ-
ing Parkinson’s disease; data from human studies is scanty.
While a theoretical basis can be developed for the use of
microbiota-directed therapies in neurodegenerative disorders,
support is yet to come from high-quality clinical trials.
Summary In theory, a role for the microbiota-gut-brain axis is
highly plausible; clinical confirmation is awaited.
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Introduction

Not since the human genome project has an area of biomedical
science generated such widespread interest in the general pub-
lic and explosion in scientific and medical literature as the
microbiome. Those not directly involved in the field could
be excused for believing that the microbiome is going to pro-
vide long-awaited answers to all unsolved conundrums and
yield new molecules that will cure all ills. Most of this interest
has revolved around the most studied commensal bacterial
community on or in the human body—the gut microbiome.
Not only has the gut microbiome been invoked as a contribu-
tor to, if not the cause of, every gastrointestinal ailment but its
influence has been extended far afield to impinge on the lungs,
joints, endocrine organs, vascular system, and, the topic of this
review, the nervous system [1–5].

Before we delve in to the intricacies of microbiota-brain
interactions, let us briefly review some general aspects of the
microbiome.

The Gut Microbiome—the Basics

The microbiome revolution, as some have termed it, is largely
facilitated by the development and rapid evolution of a num-
ber of technologies that rapidly and with ever increasing detail
and economy permit the thorough evaluation of the microbial
inhabitants of our gastrointestinal tract, their biological activ-
ities and metabolic products [6–9]. With these technologies
comes a new terminology:

Microbiota The assemblage of microorganisms (bacteria, ar-
chaea, or lower eukaryotes...) present in a defined environ-
ment, such as the gastrointestinal tract. [WHAT IS THERE?]
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Microbiome The full complement of microbes (bacteria, vi-
ruses, fungi, and protozoa), their genes, and genomes (though
strictly speaking different, the terms microbiome and micro-
biota are often used interchangeably).

Metagenomics The study of the gene content and encoded
functional attributes of the gut microbiome in healthy humans.
[WHAT THEY COULD DO?]

Metabonomics Quanti tat ive measurement of the
multiparametric (time-related) metabolic responses of com-
plex systems to a pathophysiological stimulus or genetic mod-
ification; often used synonymously with metabolomics.
[WHAT THEY PRODUCE?]

The term “flora” which dates from the time when bacteria
were included in the plant kingdom, has now been largely
abandoned and replaced by the term microbiota.

The Microbiome in Health: Development, Influences,
and Functions

At the level of bacterial strains, the gut microbiota demon-
strates tremendous diversity and variation between individ-
uals. At higher levels of organization, however, some more
overarching themes do emerge. Thus two phyla, Firmicutes
and Bacteroidetes dominate in the human gut and it has also
been proposed that populations can be classified based on the
prominence of one of the following species: Prevotella,
Bacteroides, or Ruminococcus [10]. These species have been
referred to as enterotypes and it has been proposed that their
relative prevalence is largely driven by diet [10, 11].

Though new evidence indicates that colonization of the
infant’s gut may commence in utero from the placenta, most
of the infant’s microbiota is acquired from the mother during
birth and continues to be populated through feeding and con-
tact with the external environment [12]. The infant microbiota
evolves rapidly over the next 2–3 years to resemble that of the
adult, its composition influenced by such factors as mode of
delivery (vaginal birth vs. cesarean section), source of nutri-
ents (breast milk vs. formula), geography, and exposure to
antibiotics [12–18]. These years have come to be viewed as
a vulnerable period in that perturbations may have far-
reaching impacts on development (including that of the brain)
[19–21••] and predilection to later disease [20••, 21, 22].
Stable through childhood, adolescence and adulthood, further
changes in the microbiota are thought to occur in later life.
Given that many neurodegenerative diseases occur in the el-
derly, the delineation of the normal older person’s microbiota
is of critical importance [23•]. Diet may be a major factor in
age-related changes in the elderly microbiota; if inadequate, it
can lead to a reduction in microbial diversity, a phenomenon
which has been linked to inflammation (“inflammaging”) in
the elderly [24, 25]. It remains to be determined whether aging

per se, independent of any external influences, alters the
microbiota.

Diet looms large as a major influence on the microbiota
throughout all phases of life and is, undoubtedly, a major
confounder in studies of the gut microbiota in disease [26].
The overall features of the diet (i.e., total calories, whether
highly processed or vegetable and fruit-based) [24, 27–29],
as well as individual components such as carbohydrate [30,
31], protein [32], fat [33], fiber [34–36], and vitamins [37] all
influence the composition of the microbiota. Though diet-
related changes are most likely to occur over time, alterations
in microbiota composition can also occur in the short term, if
the dietary change is sufficiently drastic [10, 11, 23•, 25, 26,
30, 38, 39]. In evaluating microbial patterns which are pro-
posed to be linked to a given neurodegenerative disorder,
these dietary influences must be remembered and, if possible,
controlled for, given the sometimes drastic limitations on nu-
trient intake that occur in such patients be they imposed by
swallowing difficulties, cognitive impairment, or gastrointes-
tinal dysfunction. Given their usual age profile, other physical
co-morbidities are also prevalent in the patient with neurode-
generative disease and, therefore, the likelihood that they may
be prescribed medications that alter microbiota composition:
antibiotics [40•, 41], proton pump inhibitors [42, 43], and
metformin [44]. It is likely that other prescription and over-
the-counter drugs also impact on gut bacterial communities.

The role of the gut microbiota in homeostasis and health
continues to be revealed; suffice it to say that an intact micro-
biota is essential for gut and bodily well-being. Well-
documented roles of the microbiota include the development
and maturation of the mucosal immune system [5, 45, 46],
maintaining the integrity of the gut barrier (proposed to play
a key role in certain neurological diseases) [47], modulating
gut neuromuscular functions [48–50], and performing a num-
ber of key metabolic functions [51, 52]. The latter could, of
course, lead to the elaboration of molecules that influence
brain function.

The Microbiome-Gut-Brain Axis—an Introduction

The concept of the brain-gut axis, a bidirectional channel of
communication between the “big brain” in the cranium and
the “little brain” (i.e., the enteric nervous system) in the abdo-
men linked by neurons of the sympathetic and parasympathet-
ic nervous systems, as well as by circulating hormones and
other neuromodulatory molecules, is far from new and has
long been visualized as the mediator of stress-related gastro-
intestinal symptoms. Interactions between brain and gut ex-
tend well beyond the bounds of the stressed, anxious, or de-
pressed gut and should also encompass situations where the
brain, the gut, and their linkage, through the autonomic ner-
vous system, are affected by the same pathologic process, as
in Parkinson’s disease, those instances where neurologic
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symptoms are a consequence of a primarily gastrointestinal
pathology, as in the malabsorption syndromes, and, finally,
to a host of common gastrointestinal symptoms (or syn-
dromes) that reflect dysfunction somewhere along the gut-
brain axis, such as irritable bowel syndrome (IBS) [53]. This
axis has now been extended to include the microbiota (the
microbiota-gut-brain axis) and tantalizing evidence to suggest
that bacteria resident in the gut could impact on the “big brain”
has emerged [54]; consequently, the microbiome has emerged
as a potential diagnostic and therapeutic target in disorders as
diverse as Parkinson’s disease, Alzheimer’s disease, amyotro-
phic lateral sclerosis, autism, stroke, depression, and drug ad-
diction [54].

It needs to be remembered that the microbiota-gut-brain
axis is far from a novel concept and was clearly described over
60 years ago when relationships between gut bacteria, their
metabolic products, and hepatic coma and the alleviation of
the syndrome of hepatic encephalopathy by the administration
of antibiotics were first described [55–57]. In these studies the
importance of small intestinal overgrowth (SIBO) with coli-
forms, in particular, was emphasized and these same bacteria
and the inflammatory response that they evoke have since
been incriminated in the pathophysiology of portal hyperten-
sion and other complications of chronic liver disease as spon-
taneous bacterial peritonitis, systemic sepsis, and hemostatic
failure [58, 59]. Indeed, there are several resonances between
microbiota interactions with the liver and those with the cen-
tral nervous system; SIBO, an abnormal microbiota, impaired
gut barrier function, a pro-inflammatory state, and the appear-
ance in the systemic circulation of neuroactive molecules gen-
erated by bacterial metabolism are postulated to play impor-
tant roles in the actual pathogenesis of a number of common
liver diseases [60, 61].

The Gut Microbiome and the Development of the Central
Nervous System

The reader will not be surprised to learn that the gut
microbiome and the host immune response play important
roles in the development and maturation of the “little brain,”
the enteric nervous system (ENS) [62••]. Sheer proximity
would, at first sight, support the plausibility of this concept,
yet, even here, a number of critical questions need to be ad-
dressed: do bacteria and/or their products gain direct access to
the ENS, or, are bacterial-neural interactions in the gut medi-
ated through intermediaries? These are questions that will
come into sharper relief when we consider microbiota-CNS
communication.

Distant though they may be from each other, the ENS and
CNS have many morphological, physiological, and pharma-
cological features in common, suggesting that if bacteria can
influence the ENS, they could similarly impact on the CNS, if
they, or their messengers, could reach there [63].

Many of the observations on the role of the gut microbiota
in neurodevelopment come from experiments in germ-free
animals [21••]. These experiments have demonstrated the im-
pact of the microbiome on the morphological and functional
development of various parts of the brain; effects which trans-
late into observable alterations in behavior [64–66]. In the
seminal studies of Diaz Heijtz and colleagues, for example,
germ-free mice demonstrated decreased expression of the im-
portant neurotrophic factor, brain-derived neurotrophic factor
(BDNF) in the cortex, hippocampus, and amygdala [65]. In
line with these observations, others have demonstrated im-
paired neurogenesis in the hippocampus [67•] and altered neu-
ral morphology in the amygdala [68] in germ-free animals.
Similar effects have been noted in response to another exper-
imental strategy; suppressing the microbiota through the ad-
ministration of broad-spectrum antibiotics [69]. That antibiot-
ic administration in early life can, not only profoundly impact
on the microbiota, but also predispose to the development of
inflammatory and metabolic disorders later in life, has been
well demonstrated in relation to obesity [70, 71].

The GutMicrobiota in Neurodegenerative Disorders—the
Theory

Though it must be emphasized that the overwhelming major-
ity of the supportive evidence comes from animal models, a
hypothesis has emerged to link gut microbes to a number of
neurodegenerative disorders ranging from Parkinson’s disease
(PD) and Alzheimer’s disease (AD) to multiple sclerosis and
amyotrophic lateral sclerosis. This is summarized in Figs. 1
and 2 and links gut bacteria with immune activation through a
defective gut barrier, thereby leading to a systemic inflamma-
tory response which, in turn, impairs the blood-brain barrier
and promotes neuro-inflammation and, ultimately, neural in-
jury and degeneration [21••, 72•, 73–78]. This aberrant
microbiota-to-CNS pathway is thought to result in the depo-
sition of β-amyloid in AD [72•, 77, 78] as well as in the
characteristic neuropathological features of PD [73, 74, 76,
79, 80], including misfolding and aggregation of α-
synuclein [81]. In some instances, specific microbial popula-
tions have been incriminated, such as periodontal, oral, and
nasal communities in AD and PD [76, 82, 83] and that global
inhabitant of the gastric mucus layer, Helicobacter pylori, in
PD [84]. Certain factors may interact with and/or potentiate
these effects. Among these, aging, with its attendant changes
in the microbiota, as well as in immune, gut barrier, and blood-
brain barrier functions, may be a critical player [77] and is
especially relevant in this context given the age profile of
many neurodegenerative disorders. Diet is another critical fac-
tor (and, indeed, confounder). In the elderly, poor diet has
been associated with lower microbiota diversity, inflamma-
tion, and disability [24]; the sufferer from a neurodegenerative
disorder is prey to nutritional deficiency given the frequent
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concurrence of dysphagia and other gastrointestinal issues. It
is also interesting to note that some of the other socio-personal
factors that have been linked to PD, such as smoking, have
also been linked to inflammatory bowel disease, a disease
where gut microbe-host interactions are thought to play a piv-
otal role [85]. Interactions between the microbiota and diet
may also be beneficial and may, for instance, contribute to
the benefits of pomegranates [86] and grape seed polyphenols
[87] in AD.

The aforementioned hypothesis relating to the role of the
gut microbiota in neurodegenerative disease has been largely

based on observations in animal models. In one AD model,
oral antibiotic treatment reduced amyloid plaque deposition
[88]. Studies in the germ-free Aβ precursor protein (APP)
transgenic mouse model revealed an altered gut microbiota.
Preparation of germ-free animals of this genotype significant-
ly reduced amyloid deposition in the brain; recolonization
with bacterial populations from conventionally raised APP
animals led to an increase in amyloid pathology, whereas re-
colonization with bacteria from wild-type animals had little
effect [89]. Other ADmodels have also been shown to possess
an altered microbiota which, interestingly, became most

Small Intestinal Bacterial Overgrowth
SIBO

Abnormal Microbiota Composition 
“Dysbiosis”

Helicobacter Pylori

Periodontal Disease

Impaired 
Gut

Barrier
Function

Inflammatory 
Response

Fig. 1 Gut origins of
inflammation in
neurodegenerative disorders—a
hypothesis. Bacterial signals from
the oral cavity, stomach
(Helicobacter pylori), small
intestine (SIBO), or colon
(“dysbiosis”) resulting in or
associated with a disrupted gut
barrier lead to a local immune
response that generates pro-
inflammatory cytokines that, in
turn, lead to systemic
inflammation.

Disrupts
Blood-Brain Barrier

Aging

Increased 
Inflammatory 

Response 
“Inflammaging” 

Decreased Neurotransmitters
Increased Oxidative Stress

Poor
Diet

Neuroinflammation

Fig. 2 The convergence of the
gut-derived inflammatory
response, aging and poor diet in
generating neuro-inflammation—
a proposed schema. Circulating
pro-inflammatory cytokines (and,
perhaps, bacteria-derived
molecules, such as
lipopolysaccharide) impair blood-
brain barrier function and initiate
a neuro-inflammatory response.
These effects are exacerbated by
the pro-inflammatory effects of a
poor diet (and other
environmental factors) and the
immunological and physiological
consequences of aging (enhanced
inflammatory responses,
decreased neurotransmitters, and
increased oxidative stress)
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pronounced with advancing age [90, 91]. In a series of elegant
experiments, Sampson and colleagues demonstrated the im-
portance of the gut microbiota to the pathophysiology of
neuro-inflammation in the development of motor deficits in
the α-synuclein-overexpressing mouse. Colonization of these
mice by feces from PD patients further accelerated the disease
process [92••]. The G93A transgenic mouse model of amyo-
trophic lateral sclerosis also demonstrated an abnormal micro-
biota and impaired gut epithelial tight junctions, defects that
were reversed by the administration of 2% butyrate; an inter-
vention that also prolonged the animals’ lives [93].
Individually and collectively, these animal studies link a dis-
turbed microbiota with systemic inflammation and neuro-in-
flammation, thereby laying the groundwork for the develop-
ment of a neurodegenerative process, exacerbated, perhaps,
by the aging process, genetic predisposition, and various en-
vironmental factors. One must be cautious not to over-
interpret findings from animal models; none fully recapitu-
lates the complete human phenotype and a failure to recognize
differences in neurophysiology, immune response, and enteric
microbiology between mouse and man may lead to expecta-
tions that cannot be realized.

The GutMicrobiota in Neurodegenerative Disorders—the
Clinical Evidence

For some time, infections of various types have been linked to
neurodegenerative disorders. Mention has already been made
to the link between H. pylori and PD [84]; infection with
Helicobacter pylori has been linked with impaired levodopa
absorption [94] and disease severity and progression [95, 96].
Furthermore, though the data is somewhat limited, eradication
of Helicobacter pylori has resulted in clinical improvement
[73, 97]. Given the high prevalence of gastrointestinal dys-
function in PD [98, 99] and the more recent suggestion that
the disease process in PD may originate in the gut [79, 80,
100], the microbiota of PD subjects has attracted considerable
attention. Not surprisingly, given its high prevalence of gut
dysmotility, PD has also been linked with small intestinal
bacterial overgrowth [101, 102]. Utilizing molecular tech-
niques to identify bacterial virulence or recognition factors,
prior exposure to bacterial infections has also been associated
with both AD [103] and PD [104].

The advent of high-throughput sequencing, metagenomics,
metabolomics, and other techniques has revolutionized the
study of the gut microbiota and its metabolism, and already,
a number of studies have been performed among subjects with
both PD and AD. Studies in PD have consistently demonstrat-
ed a microbial composition that deviates significantly
from that of appropriate controls; less consistent has been
the nature of that deviation. These studies have variably dem-
onstrated a suppression of Prevotellaceae [105, 106] and anti-
inflammatory genera such as Blautia, Coprococcus,

Roseburia, and Fecalibacterium [107] with a blooming of
pro-inflammatory Proteobacteria [107], Enterococcaceae
[108], and Enterobacteriaceae [105] with the latter being cor-
related with postural instability and difficulty with gait.

A small study in multiple system atrophy also linked a pro-
inflammatory microbiota with impaired gut barrier function
and gut inflammation [109].

Similar observations have been made in AD where a sup-
pression of anti-inflammatory taxa such as Eubacterium
rectale and a profusion of pro-inflammatory taxa such as
Escherichia and Shigella were associated with pro-
inflammatory cytokines and amyloid deposition in the brain
[110].

While these human studies, in general, support a role for
the microbiota-gut-brain axis in PD and AD, one must also be
mindful of their limitations. Most were small in size and the
study population may or may not have been representative of
the general disease population. All but one [108] relied on
fecal sampling alone and all were prey to the many factors
that may confound any study of the human microbiome in
health or disease: diet, medications, and co-morbidity, to men-
tion but a few [111•, 112, 113]. In one of the larger studies
Hill-Burns and colleagues attempted to correct for several
confounders and were able to define a microbial signature in
PD independent of the observed effects of diet, age, region of
residence, gender, and medication [114]. Depression is a com-
mon co-morbidity in AD and PD; given the pro-inflammatory
phenotype and the altered microbiota signatures associated
with depression, per se [115, 116], it may prove difficult to
differentiate the relative contributions of depression and either
AD or PD to a given microbial pattern. Interactions between
disease processes and the microbiome may be bidirectional;
one must remain open to the possibility that the disease drives
changes in the microbiota and not the other way around [111•,
117–119].

Routes of Communication

Much ignored in the discussion of the microbiota-gut-brain
axis is the simple but vexing question—how could a tiny
microbe in the gut communicate with the very distant galaxy
that is the brain? Several possibilities have been proposed.
First, and much discussed in this review, is the immune re-
sponse. In this concept, an abnormal microbiota (or, perhaps
an aberrant response to a normal microbiota) generates an
inflammatory response that results in the release of cytokines
[120•] that then results in neuro-inflammation. Mast cell acti-
vation, in contrast, may be neuroprotective [121]. Other routes
of influence, including the vagus nerve (especially relevant to
PD) [122] and microbial metabolites, which may include neu-
rotransmitters and neuromodulators have also been invoked
[21••, 123]. Of relevance to AD, bacteria have also been
shown to produce amyloid [72•, 75]. It is safe to say that many
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links in that long journey that leads from the gut lumen to the
brain remain to be identified and that some of the hypotheses
that have been generated, such as the widely reported “leaky
gut” story, represent gross oversimplifications [124].

Conclusions

Epidemiological observations and experiments in animal
models support a general schema which implicates the gut
microbiota through the microbiome-gut-brain axis in the path-
ogenesis of common neurodegenerative diseases, such as
Parkinson’s and Alzheimer’s disease. Many factors may con-
spire with bacteria and the host response to lead to the neuro-
pathology that characterizes these disorders. Limited clinical
data tends to support this concept but there are many caveats.
Leaving aside the many methodological shortcomings of ex-
tant studies, it must, first and foremost, be remembered that
microbiota-gut-brain communications are bidirectional and
one must always consider the possibility that any changes
observed in the microbiota are secondary. Quite how bugs
communicate with the brain remains to be deciphered. There
are certainly no shortage of options: through neuroactive pep-
tides synthesized by bacteria, via other bacterial metabolites
that can impact on the blood-brain barrier or brain function,
through inflammatory mediators released locally or in the liv-
er that can mediate neuro-inflammation or along the vagus.
Each will need to be considered as we attempt to unravel this
mystery.
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